Tài liệu số - Xem chi tiết



Understanding the COVID-19 Infodemic: Analyzing User-Generated Online Information During a COVID-19 Outbreak in Vietnam
Thai Quang Pham, Ngoc Anh Hoang, Dinh Cong Phung, Viet Cuong Nguyen, Son Hong Le, Thanh Cong Le, Dang Hai Le, Anh Duc Dang, Duong Nhu Tran, Nghia Duy Ngu, Florian Vogt, Cong Khanh Nguyen
Objectives: Online misinformation has reached unprecedented levels during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed the magnitude and sentiment dynamics of misinformation and unverified information about public health interventions during a COVID-19 outbreak in Da Nang, Vietnam, between July and September 2020. Methods: We analyzed user-generated online information about five public health interventions during the Da Nang outbreak. We compared the volume, source, sentiment polarity, and engagements of online posts before, during, and after the outbreak using negative binomial and logistic regression, and assessed the content validity of the 500 most influential posts. Results: Most of the 54,528 online posts included were generated during the outbreak (n = 46,035; 84.42%) and by online newspapers (n = 32,034; 58.75%). Among the 500 most influential posts, 316 (63.20%) contained genuine information, 10 (2.00%) contained misinformation, 152 (30.40%) were non-factual opinions, and 22 (4.40%) contained unverifiable information. All misinformation posts were made during the outbreak, mostly on social media, and were predominantly negative. Higher levels of engagement were observed for information that was unverifiable (incidence relative risk [IRR] = 2.83; 95% confidence interval [CI], 1.33–0.62), posted during the outbreak (before: IRR = 0.15; 95% CI, 0.07–0.35; after: IRR = 0.46; 95% CI, 0.34-0.63), and with negative sentiment (IRR = 1.84; 95% CI, 1.23–2.75). Negatively toned posts were more likely to be misinformation (odds ratio [OR] = 9.59; 95% CI, 1.20–76.70) or unverified (OR = 5.03; 95% CI, 1.66–15.24). Conclusions: Misinformation and unverified information during the outbreak showed clustering, with social media being particularly affected. This indepth assessment demonstrates the value of analyzing online “infodemics” to inform public health responses.
2022
12p
eng
Healthcare Informatics Research
307-318
28
Xem trailer
Đăng nhập tài khoản vào hệ thống để được xem toàn văn tài liệu.
Danh sách tệp tin điện tử
NoFileNameViewsDownloadsDownload
1. 2022YHDPTCQT084.pdf 1
Thông tin chia sẻ
Lượt xem:  1 Lượt tải:  0
Chia sẻ: 
Bình chọn:  Điểm bình chọn: 
0
Loại tài liệu số:  - Bài báo
- Bài báo quốc tế
Thảo luận
Tài liệu liên quan

Đăng nhập

Đăng nhập     Quên mật khẩu
Tích hợp đăng nhập với
  |  Google
Chưa có tài khoản? Đăng ký

Thống kê

Thư viện số

Loại tài liệu số

    THỐNG KÊ TRUY CẬP

    3.398.485

    110.581

    Liên kết website